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Abstract

This supplementary document provides derivation and
formula about scale factor update and pose smoothing in
more detail as mentioned in Section 3.4 and 3.6 respec-
tively in the paper. Moreover, this document demonstrates
more detailed method for the training of the proposed fea-
ture, SuperORB, with the evaluation.

1. Pose smoothing

In the proposed system, a local map with poses gener-
ated by the VO sub-system is aligned from local coordi-
nates to global coordinates. At this moment, the local map is
aligned based on a pose estimated by the VL sub-system, it
means that the alignment performance depends on the qual-
ity of localized poses. However, sometimes when the VL
pipeline estimates the wrong pose, the effect of the align-
ment of the VO pose (for convenience we call VO/VL pose
as the pose estimated from the VO/VL sub-system) should
be reduced in the result of estimating the wrong pose using
pose smoothing technique. Given a pair of poses between
the VL sub-system and the VO sub-system, we make VL
pose smooth by regularizing the relative translation and ro-
tation from VO pose with the weight w. Let K is the in-
trinsic matrix and c, t, R respectively indicates the center of
the camera, the translation vector, and the rotation matrix.
When (+),, and (-),; indicate the vector or matrix estimated
from the VO sub-system and VL sub-system, the weight
value w is obtained as:
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where e = % Zf(mi — K(Ry; X; + t,;))? is the projection
error between a projected 2D point x from a 3D point X,
and P is the number of visible 3D points. If the 6 DoF pose
estimated by VL sub-system is accurate, the projection error
is decreased. Then, the weighted VL pose can be estimated
as:

Zl = RvoRgel (2)
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where ¢} = ¢, + W - ¢p¢, and €,.¢; = €, — €4, Deriva-
tion of weighted translation is relatively easier than rotation
case. For the case of rotation, we obtain rotation axis a and
rotation angle 6 as follows; rotation axis a can be obtained
by:
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where two principal axes v,, = det(Mw)mgo,vvl =

det(M,;)m?,, det(-) indicates determinant of a matrix, and

M=KR, and m? denotes the third-row vector of M. The ro-
tation angle 6 can be easily obtained by:
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Finally, the weighted relative rotation for weighted ro-
tation matrix is calculated by using Rodrigues formula [5]
given a, 0, w and as:

R“, = I+sin(wh)A + (1 — cos(wf))A?, (6)
where A is the skew matrix of the rotation axis a.

2. Scale update

The scale factor between the offline and the online maps
is needed to be converged to an appropriate value when it
is updated. To converge the scale factor, recursive Bayesian
estimation can be derived. In the form of recursive Bayesian
estimation [3],
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where s; is the estimated scale factor in time ¢, and M; de-
notes the matching pairs on corresponding super key frames
between offline and online maps. Then the prediction term
is:
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where p(sg|s;_1) ~ N(ss_1,0F) is a motion model as a
transition, 0 = Gunin + (Tmaz * 0)/0min proposed in [7]
and 6 can be obtained as like in Equation (5).

The update term becomes p(M;|s;) ~ N (s, 0}") where
s¢ and o}" are respectively mean and standard deviation of
relative scale factor for all inlier matching pairs of 3D points
in M, but we take s; as a relative scale factor that has mini-
mal Euclidean distance error for all inliers in order to avoid
the explosion of scale factor in an update that is occurred in
the inaccurately generated 3D point pairs.

If the motion model is linear transition and the noise er-
ror is normal distribution as s;+1 = s; + v where v ~
N (0, o?), recursive Bayesian estimation is equal to Kalman
Filter as discussed iAn [3], so that it can be derived as follows.

Let Z; ;—1 andP; ;_; are a state and a state uncertainty
in prediction step predicted from trial ¢ — 1 to ¢, and Ty,
and ﬁt,t are the updated state and its uncertainty in update
step. In general, an estimated scale factor affects to next
trial because it applies to alignment process. So, in every
trial ¢, before calculating s; and 0" for the relative scale
factor, the 3D points in online map is aligned to original
scale dividing by Z;_1 ;1. And final relative scale factors;
after applying Kalman Filter becomes s; = Zy,/T¢—1,¢—1.
This is for converging to an absolute relative scale factor.

Therefore, In initial time (¢ = 1), Z1 1 = s1, and to get s1,
To,0 is set to 1 to scale 3D points in online map described
above. And for next trial (¢ >1), in prediction step:
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In update step:
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where Ky, is the weight to leverage the measurement.

3. SuperORB
3.1. Architecture

SuperORB’s network architecture is the same as Super-
Point’s architecture [2], except that the dimension of output
feature is 64 instead of 256. We used a smaller feature di-
mension is to speed up the pipeline of the visual localization
sub-system.

3.2. Training details
SuperPoint and SuperORB are trained as follows:

Step 1. Train only the interesting points detector. The
pseudo ground truth is obtained as follows:

- SuperPoint: using synthetic images

- SuperORB: applying ORB detector to real-world im-
ages.

Step 2. Extracting interesting points by inferencing the
trained detector.

Step 3. Applying homographic transformations to the ex-
tracted interesting points and aggregate them.

Step 4. Jointly training the detector and the descriptor by
using pseudo ground truth in Step 3.

The only difference between the SuperPoint and Super-
ORB is Step 1; The former uses interesting points from syn-
thetic images while the latter utilizes the ORB detector for
generating pseudo ground truth. We trained SuperPoint and
SuperORB features by using the MS-COCO dataset [4] and
training splits of 7 scenes dataset [6]. Note that only the
MS-COCO dataset is used in [2]. The Hyperparameters are
the same as [2].

3.3. Evaluation

In our experiments, we evaluate SuperPoint and Super-
ORB by using HPatches dataset [1]. First, we measure de-
tector repeatability on the HPatches dataset. In this experi-
ment, we resized the input images to 240 x 320 resolution
and extract 300 key points for each image. We set the non-
maximum suppression (NMS) size to 4 and use a correct
distance of 3 pixels.

We also compare the homography estimation accuracy
of SuperPoint and SuperORB on HPatches dataset. We ex-
tract a maximum of 1,000 key points from each input image
that is resized to 480 x 640 resolution. We used a correct
distance of 3 pixels. The experimental results are shown in
Table 1. SuperPoint-64 that are trained in this work shows
better performance when compared to original SuperPoint,
i.e. SuperPoint-256, even though they have smaller feature
sizes. When comparing SuperPoint and SuperORB, the for-
mer shows comparable detector repeatability but outper-
forms in homography estimation accuracy with a large mar-
gin.

| | Dim.  Rep. Homography |
SuperPoint-256 [2] 256  0.576 0.684
SuperPoint-64 64 0.579 0.731
SuperORB-64 64 0.584 0.634

Table 1. HPatches detector repeatability and homography estima-
tion results.
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SuperPoint-64 | 0.76  0.63 0.66 0.70 0.70 0.68 0.43
SuperORB-64 | 0.84 0.75  0.74 0.79 0.78 0.72 0.84

Table 2. Recall for detecting local map points in visual odometry systems.

SuperORB is designed to find interesting points that are
close to the ORB features for robust scale estimation. In Ta-
ble 2, we present the recall for detecting local map points,
i.e. ORB key points, when utilizing the SuperPoint and Su-
perORB detectors. Note that test sequences in the 7 scenes
dataset are used for this experiment. The recall is defined as
follows:

# of detected ORB features
recall = . (14)
# of ORB features

As shown in Table 2, SuperORB detects more map
points construct by the visual odometry sub-system than
SuperPoint. As a result, when applying SuperORB, we can
more robustly estimate the relative scale factor between the
local and the global maps.
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